W621 /0019y

Extended Type Information (revised)

Konrad Kiefer, Frank Buschmann,
Frances Paulisch, Michael Stal
Siemens AG, Corporate Research and Development,
ZFE BT SE 3, Otto-Hahn-Ring 6, 8000 Munich 83, Germany
e-mail: kk@ztivax.zfe.siemens.de
date: October 28, 1992
Contents

1) Purpose of this paper
2) The standard library class Type_info
3) Example for an extended information scheme
4) The public interface of the classes for extended type information
5) Some comments on the functions newObject() and clone()
6) References

Main modifications of the last version /7/
The discussion in the extensions working group at the Toronto meeting has been considered.
- All additional information has been moved to ExtTypelnfo
- The extended type-information has been reduced to support object 1/O only
- A discussion of the functions newObject() and clone() is added
- const (volatile) types have a different Type_info object than non-const (non-volatile) types
- The structure of the information is simplified

1) Purpose of this paper

The proposal about run-time type identification /6/ (Ansi document X3J16/92-0068) includes a
proposal for a standard library class Type_info. According to the discussion in the extensions
working group two functions should be added: a comparison function, to allow storing of

- Type_info objects in a map, and a function to get access to more information. These topics will be
addressed in section 2.

In sections 3 and 4, we discuss extended type information built on the minimal type info. The aim
of extended type information is to support object I/O. In addition the extended type information
should support a “generic constructor” that allows the construction of skeleton objects and a func-
tion “clone()” for copying objects. We discuss the problems of the functions newObject() and
clone() but we didn’t find any satisfying solution yet.

If extended type information can support object 1/0 with acceptable amount of information, it
should be part of the standard library with the following status:

- the initialization of extended type information is implementation dependent; an implementation
might offer options to generate extended type information or ignore it.

-Suppliers are allowed to extend the extended type information.

2) The standard library class Type_info

As the typeid operator may be applied to all types and expressions, it needs to be clarified, what
the name of a type is.

1of Q

A 4

Typenames for fundamental types
The typenames for fundamental types should be fixed in the deﬁmnon of the class Type_info if

we want to avoid incompatibilities. E. g. it must be stated, if we want to use “short” or “short int”.

We propose the following names for fundamental types:
“void”,
“char”, “signed char”, “unsigned char”, “wchar_t",
“short”, “unsigned short”,
“int”, “unsigned int”,
“long”, unsigned long”,
“float”, “double”, “long double”.
Although we never have an object of type void but only void*, a definition of typeid(void) makes
the type inquiry more consistent.

Typedef names
A typedef doesn’t introduce a new type but an alias for an existing type. Therefore a typedef name
shouldn’t count as a type name in the class Type_info.
If we have:
class X;
typedef X Y;
Xx;
Yy;
The following comparisons should yield true:
typeid(x) == typeid(y)
typeid(X) == typeid(Y)
Consequently we should have one Type_info object in all cases, returning the typename “X".

Typename for derived types
We propose the following rule:
If we have a derived type, we remove typedefnames and take the remaining type, as the essential
type. The name in Type_info is then the C++ declaration name, where all superfiuous blanks are
removed.
Examples:

typedef int* pi;

pi*il;

const int const** i2;
According to the rule il and i2 have the typename “int**” and “const int const**” respectively.
Further examples:

const char* a[10];

pi (*f)(int i); -
The type of a is “const char*[10]” and f is “int*(*)(int)” (pointer to a function taking an int argu-
ment and returning int*). These rules seem to be consistent with the ARM /2/ section 8.1.

Typename for templates

A template declaration defines a family of types. Each member of this family is a single type and
needs a corresponding Type_info object. A Type_info object for the family doesn’t seem to be
adequate. As for derived types the typename of templates should be the C++ declaration name by

2of}0’"\

x %
t

*
3
o
o
) 'l;
&1
2
A

PRy

ERTEIR,

leaving out typedefs. Examples taken from the ARM /2/, section 14:
template<class E, int size> class buffer;
buffer<char, 2*512> x;
buffer<char, 1024> y;
Then x and y have the same type and the same Type_info object with the typename
“buffer<char,1024>".

The Functions morelnfo() and precedes()

The function Type_info::morelnfo() allows access to extended information. The minimal type
information does not specify the class ExtTypelnfo. If only minimal type information is used, the
result of morelnfo() is a NULL pointer. morelnfo only specifies the interface to more information.
It is left to the implementation how additional information is added.

The function Type_info::precedes() allows ordering of Type_info objects. The ordering is needed
for data structures and has no further semantic. (The name of the function has not been fixed in the
extensions working group.)

Let X and Y be types. typeid(X).precedes(typeid(Y) is true, if the types X and Y are not identical
an the internal (implementation dependent) order of typeid(X) is less then the one of Y.,

Summary of the library class Type_info (see also /6/ p. 12) 7

qﬁ; -
ang

class ExtTypelnfo; —_
class Type_info (T
// implementation dependent ™
private:
Type_info(const Type_info&); .
Type_info& operator=(const Type_info&); ~_ s Dﬁ
public: S
virtual ~Type_info();
int. operator==(const Type_info&)const;
int operator!=(const Type_info&)const;
constchar* name() const; // String cluss instead 6f char* might be preferable
int precedes(const Type_info&)consf;

const class ExtTypelnfo* morelnfo() const;

)

The class Type_info is intentionally kept as minimal as possible. All additional information will
be put in the extended type information.

3) The extended type information

Why object /O based on type information?

If we do not want to write 1/O operators for every class or rely on a special compiler that supports
it, we may generate the operations with a tool. This has the disadvantage that we have to change
the classes, which is often not desirable or even possible. Another approach to get the desired fea-
ture is to store enough information about the program, that a clever algorithm might handle ‘most’
cases. The principles of this algorithm are:

Jof JO4]

We get the address of objects and know what kind of object we have.

- If we have a simple type, we may simply store the value.

- If we have a pointer or a reference, it might be necessary to follow them.

- If we have a class or structure, we must get the address of the components (offsets) and

apply the algorithm to them.
The main problems of such an algorithm in C++ are some type leaks inherited from C. A simple
example is “char*”. Without further information, the type information system cannot know if the
declaration represents a string or a simple character pointer. It is possible to solve this and related
problems with programming conventions, but there doesn’t seem to be a general solution. The
handling of these cases is therefore left to the special 1/0 algorithm.

Structure of extended information
We redesigned the MOP system /1/ to get a structure that
- is compatible to minimal type information in /5/ and /6/,
- reflects some basis aspects of the type system of C++,
- allows extensions
- stores enough information to support object I/O for ‘most’ cases
In addition to the class Type_info we have the following classes.
- The class ExtTypelnfo offers much more detailed information about a type than the class
Type_info.
- The class BaseInfo stores Information about base classes.
- The class Datalnfo holds information about data of classes
In addition we propose simple iterator classes to iterate over the information.

The semantic of the information falls into three layers.

- Layer 1: Information needed for implementing the checked cast

- Layer 2: Type information needed for object 1/0

- Layer 3: Information about offsets and store functions (newObject())
Layer 3 is needed by an 1/O algorithm based on type information, but it would be dangerous to
make this information available to the public. Visible offsets of private members break the protec-
tion of a class. Therefore we propose to protect the offsets functions in ExtTypelnfo. An imple-
mentation specific store function added to ExtTypelnfo is allowed to use the offsets, but not the
user of ExtTypelnfo in general.
The functions newObject() and clone() are discussed separately in section 5, because we didn’t
find a satisfying solution until now.

4) The public interface of the classes for extended type information

The public interface of the class ExtTypelnfo
class Baselter;
class Datalter;
class Typelter;

class ExtTypelnfo {

// implementation dependent
public:

4of J0 4

// Information layer 1
Baselter* bases(int direct = 0) const;
Baselter* vbases(int direct = 0) const;

// Information layer 2
enum typeKind {

// fundamental types
simpleKind,
// derived types
arrayKind,
ptrKind, ptrMemberKind,
refKind,
functionKind,
// enums
-enumKind,
// classes, structs and unions
classKind, structKind, unionKind
¥

enum protection {

PRIVATE,

PROTECTED,

PUBLIC

)
size_t size() const;
typeKind kindOf() const;
Datalter* data(int direct = Q) const;
Datalter* staticData(int direct = 0) const;
Typelter* typeComponents() const;

const Type_info* ptrMemType() const;

IR

Description of the member functions of ExtTypelnfo

Baselter* bases(int direct = 0) const
for classes: Pointer to an iterator over the non virtual base classes.
Otherwise: NULL pointer

Baselter* vbases(int direct = 0) const
for classes: Pointer to an iterator over the virtual base classes.
Otherwise: NULL pointer

size_t size() const;
The result of size() is the sizeof() operator applied to the type.

typeKind kindOf()const
for all types: returns the kind of the type

Sof 1g4

Datalter* data(int direct = O)const
for classes (including structs and unions): returns an iterator over the direct (optional also
inherited) non-static data members
other types: returns a NULL pointer

Datalter* staticData(int direct = O)const

for classes (including structs): returns an iterator over the direct (optional also inherited)
data members

other types: returns a NULL pointer

Typelter* typeComponents()const
derived types: returns an iterator over the type components. The function Typelter::next
returns Type_info objects that describe the type.
other types: NULL pointer
examples:
1) const char* a[10];
The actual type information yields: array
The Typelter hus two further steps with the information:
- Pointer
- simple type (the name “const char” can be obtained in the corresponding
Type_info object.)
2) char* (*f)(int i)
The actual type information yields: Pointer
The Typelter has three further steps with the information:
- function
- Pointer
- simple type

Type_info* ptrMemType()const
pointer to member: Type_info of the class
other types: NULL pointer

The public and protected interface of the class Baselnfo

The class Baselnfo stores information about base classes. Objects of Baselnfo are returned by the
iterator Baselter.

class Baselnfo { -
// implementation dependent
public:
// Information layer 1
ExtTypelnfo::protection protectSpec()const;
const Type_info* typeOf() const,
// Information layer 3
protected:
long offset () const;

)

6of W0

Description of the member functions of Baselnfo
ExtTypelnfo::protection protectSpec()const
returns the protection specifier of the corresponding base class;

const Type_info* typeOf()const
returns the Type_info object of the base class

long offset ()const
returns the offset of the base class part in this class;
Note that it is necessary to iterate over all virtual bases classes (call vbases() without the
optional argument direct) to get the correct offsets of virtual bases.
Example:
class A [...};
class B: public virtual A {...}; class C: public virtual A {...};
class D: public B, public C {...};
Then the offset of A in D is in general not the sum of the offset of B in D and the offset of A
in B. '

The public and protected interface of the class Datalnfo
The class Datalnfo stores information about data members of classes. Objects of Datalnfo are
returned by the iterator Datalter.

class Datalnfo {
// implementation dependent

public:

// Information layer 2
const Type_info* typeOf() const;
ExtTypelnfo::protection protectSpec() const;

int bitfieldSize() const;
// Information layer 3
protected:

long offset() const;

IR

Description of the member functions of Datalnfo
const Type_info* typeOf()const
returns typeid(member)

protection protectSpec()const
returns the protection specifier:

int bitfieldSize() const

returns the number of bits if the member is a bitfield
-1 otherwise

Tof W4

long offset()const

for non-static data members: returns offset in bytes
for static data members: retums the absolute address

The public interface of the iterator classes

A template iterator class might replace the iterator classes. The constructor of the iterator needs a
pointer or reference to the data structure (here someData). The data structure is implementation
dependent and not specified here.

class Baselter {
// implementation dependent;

public:
const Baselnfo* next();
const Baselnfo* reset();

Baselter(const someData* p, int direct = 0);

)

class Datalter {
// implementation dependent;

public:
const Datalnfo* next();
const Datalnfo* reset();

Datalter(const someData* p, int direct = 0);

I

class Typelter {
// implementation dependent:
public:
const Type_info* next();
const Type_info* reset();
Typelter(const someData* p);

IR
Description of the public interface of the iterator classes
const Somelnfo* next()
The iteration function. After the construction of the iterator the function next returns the first

element.

const Somelnfo* reset()
Sets the iterator at the beginning and returns the first element

5) Some comments on the functions newQbject and clone()
The function newObject() and clone() can be easily defined as templates.

8of W 9

,,Z < L T?
* W‘W(fx‘l%}%*)}'
template <class T> class Typeid {
public:
T* newObject(){return new T; }; PURY
T* clone(T arg) (return new T(arg); }; X f* = f“"’—o’?"l x> (08,
5

The function newObject() refers to the default constructor and clone() to the copy constructor.
The template class Typeid can only be created if default and copy ¢onstructor of the class are
accessible.

However, the use of the template functions requires that we know the type of the object we want
to create at compile-time.

class A {};

Typeid <A> ATypeid;

A* pA; // may point to a subclass of A

Now we cannot create a copy or call newObject for the actual type of pA. To manage this, we can
put newObject() and clone() in the extended type-information and call the right template function
for every class. E.g:

class ExiTypelnfo(. W) f Cht T 2 TH ~et)

public:) o~ “ ',"

/. | < gl g @MZ
void* newObject();

y void* clone(void* arg); X ~px = PE .wd’?ﬁv"/(’(} 0

The problem in this example is the void* interface. An ugly and unchecked cast from void* would
be necessary and would allow allocation storage for everything without control of the type sys-
tem:

A* pA = (A*) typeid(int*).morelnfo->newObject().

The result would be, that pA points to the storage of an int.

We do not have a satisfying solution for this problem now.

6) References

/1/ Frank Buschmann, Konrad Kiefer and Michael Stal: A Run-time Information

System for C++. Proc. TOOLS Europe 1992.

/2/ Margaret A. Ellis, Bjarne Stroustrup: The Annotated C++ Reference Manual,

Addison Wesley, 1990

/3/ Dmitry Lenkov, Michey Metha, Shankar Unni: Type Identification in C++.

Usenix C++ Conference Proceedings, April 1991.

/4/ Bjarne Stroustrup: The C++ Programming Language (Second Edition).

Addison-Wesley, 1991.

/5/ Bjarne Stroustrup and Dmitry Lenkov: Run-Time Type Identification for C++.
ANSI/X3j16 document 92-0028

/6/ Bjarne Stroustrup and Dmitry Lenkov: Run-Time Type Identification for C++

(Revised) ANSI/X3j16 document 92-0068

17/ Konrad Kiefer, Frank Buschmann, Frances Paulisch, Michael Stal: Proposal for the library
class Type_info, Example of extended type information. ANSI document X3J16/92-0074, WG21/
NO151

90(}6_9

